<cite id="e3wrq"></cite>
        水凝支架三維培養(yǎng)系統(tǒng),水凝膠基質(zhì)力學(xué)環(huán)境模擬系統(tǒng),水凝膠基質(zhì)力學(xué)環(huán)境系統(tǒng),生物材料細胞力學(xué)微環(huán)境體外構(gòu)建系統(tǒng)

        型號:fx-5000tt
        聯(lián)系人:李勝亮
        聯(lián)系電話:18618101725
        品牌:美國flexercell

        三維種子細胞構(gòu)建人工生物組織系統(tǒng)(Creating a Bioartifical Construct with the Tissue Train System)

        特點:

        1)對生長在三維狀態(tài)下的細胞進行靜態(tài)的或者周期性的牽張拉伸刺激培養(yǎng),可以進行實時觀察分析。

        2)對生長在三維環(huán)境下的細胞進行單軸向或者雙軸向的靜態(tài)或者周期性的應(yīng)力加載實驗

        3)可建立te制的各種模擬實驗:心率模擬實驗,步行模擬實驗,跑動模擬實驗和其他動力模擬實驗。
        4)構(gòu)建長度達35mm的生物人工組織

        5)具有豐富的三維培養(yǎng)模具和多種蛋白包被材料的自動細胞組織三維培養(yǎng)系統(tǒng)




        6)該系統(tǒng)以立體水凝膠為三維培養(yǎng)支架, 水凝膠支架具有大量體內(nèi)微環(huán)境基質(zhì)的特征,水凝膠所具有的三維網(wǎng)絡(luò)結(jié)構(gòu)、含水量高和力學(xué)性能可控等特性與體內(nèi)細胞所處基質(zhì)微環(huán)境相似, 被廣泛用于工程化組織的體外構(gòu)建研究,水凝膠的硬度調(diào)控范圍很大, 非常有利于模擬體內(nèi)生理或病理力學(xué)微環(huán)境
        是真正意義上的三維培養(yǎng)系統(tǒng)




        7)配套的scanflex掃描分析模塊可以記錄三維人工組織中凝膠的壓實過程、記錄三維細胞培養(yǎng)凝膠的壓實動力學(xué)、凝膠面積計算

        An automated scanning device with area measurement software.

        • Measure gel compaction in 3D bioartificial tissues.
        • Scans and saves images up to 600 dpi of 3D tissue constructs.
        • Can be used in conjunction with the Tissue Train® Culture System.
        Read more about Tissue Engineering with flexercell® products.

        適用范圍

        1)flexercell的Tissue Train ®培養(yǎng)體系,是為了解決這一組織培養(yǎng)過程中的難題,這個培養(yǎng)體系通過為細胞和基質(zhì)提供三維支架矩陣組織、動態(tài)的拉伸力和多種幾何模型來創(chuàng)建不同形狀的生物人工組織(如線性,梯形和圓形)。


        2水凝膠基質(zhì)力學(xué)環(huán)境模擬

        3)生物材料的細胞力學(xué)微環(huán)境體外構(gòu)建系統(tǒng)

        4)基于干細胞3D力學(xué)環(huán)境的工程化微組織構(gòu)建研究



        Tissue Train® Bioartificial Tissue Fabrication with Uniaxial Strain

        A 3D collagen cell-seeded construct (or bioartifical tissue) is dispensed with a pipette into a linear mold created with the  Trough Loader® and Tissue Train® System. After the construct has polymerized, the flexercell® Tension System can be used with an Arctangle® Loading Station? to apply uniaxial strain to the construct.

        Tension Test of a Bioartificial Tissue
        A 3D cell-seeded collagen gel created with the Tissue Train® System is subjected to a tensile test until failure. Shown here is the construct within the test grips during testing

        Tissue Train® Trapezoidal Construct under Tension with Corresponding Finite Element Strain Values
        Trapezoidal-shaped 3D cell-seeded gel construct (created with the flexercell® Tissue Train®System) undergoing unconstrained tension applied with the FX-5000? Tension System. The strain values, as determined with Finite Element Analysis, are depicted alongside the strained construct.

        Tissue Train ®培養(yǎng)系統(tǒng)應(yīng)用背景

        體外培養(yǎng)在與真實組織在結(jié)構(gòu)上和功能上相似的人工組織需要以下幾個基本條件:

        (1)細胞

        (2)支架矩陣組織

        (3)培養(yǎng)基和生長因子和(4)機械刺激。這些條件彼此相互影響,并且相互之間共同來促進形成能夠承受生物機械力的,且結(jié)構(gòu)比較穩(wěn)定的組織。而在人工組成形成的過程中,這些細胞按照發(fā)育途徑形成具有一定幾何形狀的細胞外基質(zhì)結(jié)構(gòu)。其中一些信號轉(zhuǎn)導(dǎo)途徑參與了細胞外基質(zhì)組合物的形成。這些途徑中,有些是由細胞基質(zhì)的機械變形調(diào)節(jié),并通過膜結(jié)合蛋白,如整合素,粘著斑復(fù)合體,細胞粘附分子和離子通道傳遞到細胞內(nèi)。這些途徑中細胞還可以響應(yīng)配體,如細胞基質(zhì)形變所釋放的細胞因子,激素或生長因子等。

        為了維持肌肉骨骼組織的完整性和強度,組織內(nèi)細胞需要保持一定水平的的內(nèi)在應(yīng)力。如果缺乏這種內(nèi)在的應(yīng)力,組織會缺少強度導(dǎo)致細胞結(jié)構(gòu)的破壞或者組織的斷裂。目前一般認為如果在固定四肢,臥床休息或在內(nèi)在應(yīng)力水平的降低的情況下,將導(dǎo)致骨中礦物質(zhì)流失,骨組織萎縮,骨骼弱化,以及合成代謝活性的降低和分解代謝活性的增加。

        為了在體外培養(yǎng)與原生組織類似的人工組織,重要的就是能夠創(chuàng)建模擬體內(nèi)條件的環(huán)境。細胞在具有機械運動作用的的環(huán)境中培養(yǎng),可以促進細胞的新陳代謝,并可以改變細胞的形狀和其它性能。因此,在體外形成過程中建立和保持一個具備機械作用的環(huán)境(即張力,剪切力或壓縮)就成為這一過程中至關(guān)重要的。除了具備機械作用的環(huán)境,在三維環(huán)境下培養(yǎng)細胞可以比靜態(tài)二維培養(yǎng)法更好地模擬原生環(huán)境。






        典型應(yīng)用文獻摘選:

         

        1. Abraham T, Kayra D, McManus B, Scott A. Quantitative assessment of forward and backward second harmonic three dimensional images of collagen type I matrix remodeling in a stimulated cellular environment. J Struct Biol 180(1):17-25, 2012.

        2. Ahearne M, Bagnaninchi PO, Yang Y, El Haj AJ. Online monitoring of collagen fibre alignment in tissue-engineered tendon by PSOCT. J Tissue Eng Regen Med 2(8):521-524, 2008.

        3. Allison DA, Wight TN, Ripp NJ, Braun KR, Grande-Allen KJ. Endogenous overexpression of hyaluronan synthases within dynamically cultured collagen gels: implications for vascular and valvular disease. Biomaterials 29:2969-2976, 2008.

        4. Barbolina MV, Liu Y, Gurler H, Kim M, Kajdacsy-Balla AA, Rooper L, Shepard J, Weiss M, Shea LD, Penzes P, Ravosa MJ, Stack MS. Matrix rigidity activates Wnt signaling through down-regulation of Dickkopf-1 protein. J Biol Chem 288(1):141-51, 2013.

        5. Bertrand AT, Ziaei S, Ehret C, Duchemin H, Mamchaoui K, Bigot A, Mayer M, Quijano-Roy S, Desguerre I, Lainé J, Ben Yaou R, Bonne G, Coirault C. Cellular microenvironments reveal defective mechanosensing responses and elevated YAP signaling in LMNA-mutated muscle precursors. J Cell Sci 127(Pt 13):2873-84, 2014.

        6. Cao TV, Hicks MR, Campbell D, Standley PR. Dosed myofascial release in three-dimensional bioengineered tendons: effects on human fibroblast hyperplasia, hypertrophy, and cytokine secretion. J Manipulative Physiol Ther 36(8):513-21, 2013.

        7. Cao TV, Hicks MR, Zein-Hammoud M, Standley PR. Duration and magnitude of myofascial release in 3-dimensional bioengineered tendons: effects on wound healing. J Am Osteopath Assoc 115(2):72-82, 2015.

        8. Charoenpanich A, Wall ME, Tucker CJ, Andrews DM, Lalush DS, Loboa EG. Microarray analysis of human adipose-derived stem cells in three-dimensional collagen culture: osteogenesis inhibits bone morphogenic protein and Wnt signaling pathways, and cyclic tensile strain causes upregulation of proinflammatory cytokine regulators and angiogenic factors. Tissue Eng Part A 17(21-22):2615-2627, 2011.

        9. Clause KC, Tinney JP, Liu LJ, Gharaibeh B, Huard J, Kirk JA, Shroff SG, Fujimoto KL, Wagner WR, Ralphe JC, Keller BB, Tobita K. A three-dimensional gel bioreactor for assessment of cardiomyocyte induction in letal muscle-derived stem cells. Tissue Eng Part C Methods 16(3):375-385, 2010.

        10. Clause KC, Tinney JP, Liu LJ, Keller BB, Tobita K. Engineered early embryonic cardiac tissue increases cardiomyocyte proliferation by cyclic mechanical stretch via p38-MAP kinase phosphorylation. Tissue Engineering Part A 15(6):1373-1380, 2009.

        11. Clause KC, Tinney JP, Liu JL, Keller BB, Huard J, Tobita K. p38MAP-kinase regulates cardiomyocyte proliferation and contractile properties of engineered early embryonic cardiac tissue [abstract]. Weinstein Cardiovascular Development Research Conference, Indianapolis, IN, 2007.

        12. Clause KC, Tinney JP, Liu JL, Gharaibeh B, Fujimoto LK, Wagner WR, Ralphe JC, Keller BB, Huard J, Tobita K. Functioning engineered cardiac tissue from letal muscle derived stem cells [abstract]. 4th Annual Symposium of AHA Council on Basic Cardiovascular Sciences, Keystone CO, 2007.

        13. de Jonge N, Foolen J, Brugmans MC, S?ntjens SH, Baaijens FP, Bouten CV. Degree of scaffold degradation influences collagen (re)orientation in engineered tissues. Tissue Eng Part A 20(11-12):1747-57, 2014.

        14. de Lange WJ, Grimes AC, Hegge LF, Ralphe JC. Ablation of cardiac myosin-binding protein-C accelerates contractile kinetics in engineered cardiac tissue. J Gen Physiol 141(1):73-84, 2013.

        15. Ferdous Z, Lazaro LD, Iozzo RV, H??k M, Grande-Allen KJ. Influence of cyclic strain and decorin deficiency on 3D cellularized collagen matrices. Biomaterials 29(18):2740-2748, 2008.

        16. Freeman SA, Christian S, Austin P, Iu I, Graves ML, Huang L, Tang S, Coombs D, Gold MR, Rolley CD. Applied stretch initiates directional invasion through the action of Rap1 GTPase as a tension sensor. J Cell Sci 130(1):152-163, 2017.

        17. Garvin J, Qi J, Maloney M, Banes AJ. Novel system for engineering bioartificial tendons and application of mechanical load. Tissue Eng 9(5):967-979, 2003.

        18. Henshaw DR, Attia E, Bhargava M, Hannafin JA. Canine ACL fibroblast integrin expression and cell alignment in response to cyclic tensile strain in three-dimensional collagen gels. J Orthop Res 24(3):481-490, 2006.

        19. Huang G, Wang L, Wang S, Han Y, Wu J, Zhang Q, Xu F, Lu TJ. Engineering three-dimensional cell mechanical microenvironment with hydrogels. Biofabrication 4(4):042001, 2012.

        20. Jobling AI, Gentle A, Metlapally R, McGowan BJ, McBrien NA. Regulation of scleral cell contraction by transforming growth factor-? and stress: competing roles in myopic eye growth. J Biol Chem 284(4):2072-2079, 2009.

        21. Jones ER, Jones GC, Legerlotz K, Riley GP. Cyclical strain modulates metalloprotease and matrix gene expression in human tenocytes via activation of TGFβ. Biochim Biophys Acta 1833(12):2596-2607, 2013.

        22. Lee CH, Shin HJ, Cho IH, Kang YM, Kim IA, Park KD, Shin JW. Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials 26(11):1261-1270, 2005.

        23. Masumoto H, Nakane T, Tinney JP, Yuan F, Ye F, Kowalski WJ, Minakata K, Sakata R, Yamashita JK, Keller BB. The myocardial regenerative potential of three-dimensional engineered cardiac tissues composed of multiple human iPS cell-derived cardiovascular cell lineages. Sci Rep 6:29933, 2016.

        24. Nguyen MD, Tinney JP, Ye F, Elnakib AA, Yuan F, El-Baz A, Sethu P, Keller BB, Giridharan GA. Effects of physiologic mechanical stimulation on embryonic chick cardiomyocytes using a microfluidic cardiac cell culture model. Anal Chem 87(4):2107-13, 2015.

        25. Nieponice A, Maul TM, Cumer JM, Soletti L, Vorp DA. Mechanical stimulation induces morphological and phenotypic changes in bone marrow-derived progenitor cells within a three-dimensional fibrin matrix. J Biomed Mater Res A 81(3):523-530, 2007.

        26. Nourse MB, Halpin DE, Scatena M, Mortisen DJ, Tulloch NL, Hauch KD, Torok-Storb B, Ratner BD, Pabon L, Murry CE. VEGF induces differentiation of functional endothelium from human embryonic stem cells: implications for tissue engineering. Arterioscler Thromb Vasc Biol 30(1):80-89, 2010.

        27. Peters AS, Brunner G, Krieg T, Eckes B. Cyclic mechanical strain induces TGFβ1-signalling in dermal fibroblasts embedded in a 3D collagen lattice. Arch Dermatol Res 307(2):191-7, 2015.

         

         

        28. Qi J, Chi L, Bynum D, Banes AJ. Gap junctions in IL-1β-mediated cell survival response to strain. J Appl Physiol 110(5):1425-1431, 2011.

        29. Qi J, Chi L, Faber J, Koller B, Banes AJ. ATP reduces gel compaction in osteoblast-populated collagen gels. J Appl Physiol 102(3):1152-60, 2007.

        30. Qi J, Chi L, Maloney M, Yang X, Bynum D, Banes AJ. Interleukin-1? increases elasticity of human bioartificial tendons. Tissue Eng 12(10):2913-2925, 2006.

        31. Qi J, Fox AM, Alexopoulos LG, Chi L, Bynum D, Guilak F, Banes AJ. IL-1??decreases the elastic modulus of human tenocytes. J Appl Physiol 101(1):189-95, 2006.

        32. Qi J, Chi L, Wang J, Sumanasinghe R, Wall M, Tsuzaki M, Banes AJ. Modulation of collagen gel compaction by extracellular ATP is MAPK and NF-?B pathways dependent. Exp Cell Res 315(11):1990-2000, 2009.

        33. Rathbone SR, Glossop JR, Gough JE, Cartmell SH. Cyclic tensile strain upon human mesenchymal stem cells in 2D and 3D culture differentially influences CCNL2, WDR61 and BAHCC1 gene expression levels. J Mech Behav Biomed Mater 11:82-91, 2012.

        34. Raval KK, Tao R, White BE, De Lange WJ, Koonce CH, Yu J, Kishnani PS, Thomson JA, Mosher DF, Ralphe JC, Kamp TJ. Pompe disease results in a Golgi-based glycosylation deficit in human induced pluripotent stem cell-derived cardiomyocytes. J Biol Chem 290(5):3121-36, 2015.

        35. Ruan JL, Tulloch NL, Saiget M, Paige SL, Razumova MV, Regnier M, Tung KC, Keller G, Pabon L, Reinecke H, Murry CE. Mechanical stress promotes maturation of human myocardium from pluripotent stem cell-derived progenitors. Stem Cells 33(7):2148-57, 2015.

        36. Schmidt JB, Chen K, Tranquillo RT. Effects of intermittent and incremental cyclic stretch on ERK signaling and collagen production in engineered tissue. Cellular and Molecular Bioengineering 1-10, 2015.

        37. Sumanasinghe RD, Bernacki SH, Loboa EG. Osteogenic differentiation of human mesenchymal stem cells in collagen matrices: effect of uniaxial cyclic tensile strain on bone morphogenetic protein (BMP-2) mRNA expression. Tissue Eng 12(12):3459-3465, 2006.

        38. Taylor SE, Vaughan-Thomas A, Clements DN, Pinchbeck G, Macrory LC, Smith RK, Clegg PD. Gene expression markers of tendon fibroblasts in normal and diseased tissue compared to monolayer and three dimensional culture systems. BMC Musculolet Disord 10:27, 2009.

        39. Tchao J, Han L, Lin B, Yang L, Tobita K. Combined biophysical and soluble factor modulation induces cardiomyocyte differentiation from human muscle derived stem cells. Sci Rep 4:6614, 2014.

        40. Tchao J, Kim JJ, Lin B, Salama G, Lo CW, Yang L, Tobita K. Engineered human muscle tissue from letal muscle derived stem cells and induced pluripotent stem cell derived cardiac cells. Int J Tissue Eng. 2013:198762, 2013.

        41. Tobita K, Liu LJ, Janczewski AM, Tinney JP, Nonemaker JM, Augustine S, Stolz DB, Shroff SG, Keller BB. Engineered early embryonic cardiac tissue retains proliferative and contractile properties of developing embryonic myocardium. Am J Physiol Heart Circ Physiol 291(4):H1829-37, 2006.

        42. Tondon A, Haase C, Kaunas R. Mechanical stretch assays in cell culture systems. In: Handbook of Imaging in Biological Mechanics, ed. Neu CP, Genin GM. CRC Press: Boca Raton, 2015.

        43. Triantafillopoulos IK, Banes AJ, Bowman KF Jr, Maloney M, Garrett WE Jr, Karas SG. Nandrolone decanoate and load increase remodeling and strength in human supraspinatus bioartificial tendons. Am J Sports Med 32(4):934-943, 2004.

        44. Tulloch NL, Muskheli V, Razumova MV, Korte FS, Regnier M, Hauch KD, Pabon L, Reinecke H, Murry CE. Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ Res 109(1):47-59, 2011.

        45. Weinbaum JS, Schmidt JB, Tranquillo RT. Combating adaptation to cyclic stretching by prolonging activation of extracellular signal-regulated kinase. Cellular and Molecular Bioengineering 6(3):279-286, 2013.

        46. Wen W, Chau E, Jackson-Boeters L, Elliott C, Daley TD, Hamilton DW. TGF-?1 and FAK regulate periostin expression in PDL fibroblasts. J Dent Res 89(12):1439-1443, 2010.

        47. Yang G, Rothrauff BB, Lin H, Gottardi R, Alexander PG, Tuan RS. Enhancement of tenogenic differentiation of human adipose stem cells by tendon-derived extracellular matrix. Biomaterials 34(37):9295-306, 2013.

        48. Yang Y, Wimpenny I, Wang RK. Application of polarization-sensitive OCT and Doppler OCT in tissue engineering. In: Optical Techniques in Regnerative Medicine, edited by Morgan SP, Rose F, Matcher SJ. Taylor & Francis Group: Florida, p. 307-327, 2014.

        49. Ye F, Yuan F, Li X, Cooper N, Tinney JP, Keller BB. Gene expression profiles in engineered cardiac tissues respond to mechanical loading and inhibition of tyrosine kinases. Physiol Rep 1(5):e00078, 2013.

         


          <cite id="e3wrq"></cite>
            高辣h视频 | 免费一级A毛片夜夜看 | 国产午夜精品一区二区三区在线观看 | 91精品国产91久久 | 亚洲日本中文字幕 | 久久精品无码一区二区无码性色 | 中文字幕免费高清在线观看 | 色撸网| 欧美黑人粗大视频 | 成人网站在线观看一区高清无码 |